MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 3

1. Write the number $1043_{(5)}$ in 4-ary representation.
2. Let D be a set and let $f, g: D \rightarrow \mathbb{R}$ be bounded functions such that $\forall x \in D, f(x) \leq g(x)$. For each of the following statements, either prove it or give a counter-example.
(a) $\sup f(D) \leq \inf g(D)$.
(b) $\sup f(D) \leq \sup g(D)$.
(c) $\inf f(D) \leq \inf g(D)$.
3. Prove that for any sets $A, B \subseteq \mathbb{R}$ that are bounded above, $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

Before continuing further, let's review the definition of limit.
Definition 1. Let $P(n)$ be a mathematical statement for every $n \in \mathbb{N}$. We say that eventually $P(n)$ holds if there is (an event) $N \in \mathbb{N}$ such that for every (moment) $n \geq N, P(n)$ holds.

Definition 2. We say that $L \in \mathbb{R}$ is a limit of a sequence $\left(x_{n}\right)_{n}$, and write $\lim _{n \rightarrow \infty} x_{n}=L$ or $x_{n} \rightarrow L$, if for every (measure of closeness) $\varepsilon>0$, eventually $\left|x_{n}-L\right|<\varepsilon$ (i.e. x_{n} is within less than ε distance of L).

Rewriting the last definition without using the term eventually, we get the following (somewhat dry and hard to comprehend) reformulation:
Definition 2^{\prime}. We say that $L \in \mathbb{R}$ is a limit of a sequence $\left(x_{n}\right)_{n}$ if

$$
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geq N\left|x_{n}-L\right|<\varepsilon
$$

It is also worth noting that the condition $\left|x_{n}-L\right|<\varepsilon$ can be written in various (equivalent) ways, such as:
(i) $-\varepsilon<x_{n}-L<\varepsilon$
(ii) $-\varepsilon<L-x_{n}<\varepsilon$
(iii) $L-\varepsilon<x_{n}<L+\varepsilon$
(iv) $x_{n} \in(L-\varepsilon, L+\varepsilon)$
(v) $x_{n} \in B(L, \varepsilon)$, where $B(L, \varepsilon)$ denotes the "open ball around L of radius ε ", which simply means $B(L, \varepsilon):=(L-\varepsilon, L+\varepsilon)$.
5. Let $P(n)$ be a mathematical statement for every $n \in \mathbb{N}$. Write down explicitly the negation of the statement "eventually $P(n)$ holds".
6. Let $n_{0} \in \mathbb{N}$. For a sequence $\left(x_{n}\right)_{n}$, let $\left(x_{n}\right)_{n \geq n_{0}}$ denote the sequence obtained from $\left(x_{n}\right)_{n}$ by deleting the first $n_{0}-1$ terms, i.e. $\left(x_{n_{0}}, x_{n_{0}+1}, x_{n_{0}+2}, \ldots\right)$. Prove that $\left(x_{n}\right)_{n}$ converges to L if and only if $\left(x_{n}\right)_{n \geq n_{0}}$ converges to L. In other words, the first finitely many terms don't affect the convergence of the sequence.
7. Suppose that $x_{n} \rightarrow L$ and $L>7$. Prove that eventually $x_{n}>7$.
8. For each of the following statements, determine whether they are true or false, and prove your answers.
(a) If a sequence is bounded, it has a limit.
(b) The sequence $(0,1,0,1, \ldots)$ diverges.
(c) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}=-1$.
(d) If a sequence is monotone, it has a limit.
(e) If $\left(x_{n} \cdot y_{n}\right)_{n}$ converges, then at least one of $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ converges.
(f) If a bounded sequence $\left(x_{n}\right)_{n}$ is increasing, then it converges to $\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
9. Do Problems 1, 2(b) and 3 of HW10. If you have time, also do 2(a) and 4.

