MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 3

1. Write the number $1043_{(5)}$ in 4-ary representation.

- **2.** Let *D* be a set and let $f, g: D \to \mathbb{R}$ be bounded functions such that $\forall x \in D, f(x) \leq g(x)$. For each of the following statements, either prove it or give a counter-example.
 - (a) $\sup f(D) \le \inf g(D)$.
 - (b) $\sup f(D) \le \sup g(D)$.
 - (c) $\inf f(D) \leq \inf g(D)$.
- **3.** Prove that for any sets $A, B \subseteq \mathbb{R}$ that are bounded above, $\sup(A \cup B) = \max \{\sup A, \sup B\}$.

Before continuing further, let's review the definition of limit.

Definition 1. Let P(n) be a mathematical statement for every $n \in \mathbb{N}$. We say that **even-**tually P(n) holds if there is (an event) $N \in \mathbb{N}$ such that for every (moment) $n \ge N$, P(n) holds.

Definition 2. We say that $L \in \mathbb{R}$ is a *limit* of a sequence $(x_n)_n$, and write $\lim_{n\to\infty} x_n = L$ or $x_n \to L$, if for every (measure of closeness) $\varepsilon > 0$, **eventually** $|x_n - L| < \varepsilon$ (i.e. x_n is within less than ε distance of L).

Rewriting the last definition without using the term **eventually**, we get the following (somewhat dry and hard to comprehend) reformulation:

Definition 2'. We say that $L \in \mathbb{R}$ is a *limit* of a sequence $(x_n)_n$ if

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ |x_n - L| < \varepsilon.$

It is also worth noting that the condition $|x_n - L| < \varepsilon$ can be written in various (equivalent) ways, such as:

- (i) $-\varepsilon < x_n L < \varepsilon$
- (ii) $-\varepsilon < L x_n < \varepsilon$
- (iii) $L \varepsilon < x_n < L + \varepsilon$
- (iv) $x_n \in (L \varepsilon, L + \varepsilon)$
- (v) $x_n \in B(L,\varepsilon)$, where $B(L,\varepsilon)$ denotes the "open ball around L of radius ε ", which simply means $B(L,\varepsilon) := (L \varepsilon, L + \varepsilon)$.
- 5. Let P(n) be a mathematical statement for every $n \in \mathbb{N}$. Write down explicitly the negation of the statement "eventually P(n) holds".
- **6.** Let $n_0 \in \mathbb{N}$. For a sequence $(x_n)_n$, let $(x_n)_{n \ge n_0}$ denote the sequence obtained from $(x_n)_n$ by deleting the first $n_0 1$ terms, i.e. $(x_{n_0}, x_{n_0+1}, x_{n_0+2}, ...)$. Prove that $(x_n)_n$ converges to L if and only if $(x_n)_{n \ge n_0}$ converges to L. In other words, the first finitely many terms don't affect the convergence of the sequence.
- **7.** Suppose that $x_n \to L$ and L > 7. Prove that **eventually** $x_n > 7$.

- 8. For each of the following statements, determine whether they are true or false, and prove your answers.
 - (a) If a sequence is bounded, it has a limit.
 - (b) The sequence (0, 1, 0, 1, ...) diverges.

(c)
$$\lim_{n \to \infty} \frac{(-1)^n n}{n+1} = -1.$$

- (d) If a sequence is monotone, it has a limit.
- (e) If $(x_n \cdot y_n)_n$ converges, then at least one of $(x_n)_n$ and $(y_n)_n$ converges.
- (f) If a bounded sequence $(x_n)_n$ is increasing, then it converges to $\sup \{x_n : n \in \mathbb{N}\}$.

9. Do Problems 1, 2(b) and 3 of HW10. If you have time, also do 2(a) and 4.